000 13186nam a22009615i 4500
001 195223
003 IT-RoAPU
005 20221214232831.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 210830t20201994nju fo d z eng d
020 _a9780691218632
_qPDF
024 7 _a10.1515/9780691218632
_2doi
035 _a(DE-B1597)9780691218632
035 _a(DE-B1597)567570
035 _a(OCoLC)1229161176
040 _aDE-B1597
_beng
_cDE-B1597
_erda
050 4 _aQA280
_b.H264 1994
072 7 _aBUS036000
_2bisacsh
082 0 4 _a519.5/5
_220
084 _aonline - DeGruyter
100 1 _aHamilton, James Douglas
_eautore
245 1 0 _aTime Series Analysis /
_cJames Douglas Hamilton.
264 1 _aPrinceton, NJ :
_bPrinceton University Press,
_c[2020]
264 4 _c©1994
300 _a1 online resource (816 p.)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 0 _tFrontmatter --
_tContents --
_tPreface --
_t1 Difference Equations --
_t1.1. First-Order Difference Equations --
_t1.2. pth-Order Difference Equations --
_tAPPENDIX I.A. Proofs of Chapter 1 Propositions --
_tChapter 1 References --
_t2 Lag Operators --
_t2.1. Introduction --
_t2.2. First-Order Difference Equations --
_t2.3. Second-Order Difference Equations --
_t2.4. pth-Order Difference Equations --
_t2.5. Initial Conditions and Unbounded Sequences --
_tChapter 2 References --
_t3 Stationary ARMA Processes --
_t3.1. Expectations, Stationarity, and Ergodicity --
_t3.2. White Noise --
_t3.3. Moving Average Processes --
_t3.4. Autoregressive Processes --
_t3.5. Mixed Autoregressive Moving Average Processes --
_t3.6. The Autocovariance-Generating Function --
_t3.7. Invertibility --
_tAPPENDIX 3.A. Convergence Results for Infinite-Order Moving Average Processes --
_tChapter 3 Exercises --
_tChapter 3 References --
_t4 Forecasting --
_t4.1. Principles of Forecasting --
_t4.2. Forecasts Based on an Infinite Number of Observations --
_t4.3. Forecasts Based on a Finite Number of Observations --
_t4.4. The Triangular Factorization of a Positive Definite Symmetric Matrix --
_t4.5. Updating a Linear Projection --
_t4.6. Optimal Forecasts for Gaussian Processes --
_t4.7. Sums of ARM A Processes --
_t4.8. Wold's Decomposition and the Box-Jenkins Modeling Philosophy --
_tAPPENDIX 4.A. Parallel Between OLS Regression and Linear Projection --
_tAPPENDIX 4.B. Triangular Factorization of the Covariance Matrix for an MA(1) Process --
_tChapter 4 Exercises --
_tChapter 4 References --
_t5 Maximum Likelihood Estimation --
_t5.1. Introduction --
_t5.2. The Likelihood Function for a Gaussian AR(7J Process --
_t5.3. The Likelihood Function for a Gaussian AR(p) Process --
_t5.4. The Likelihood Function for a Gaussian MA(1) Process --
_t5.5. The Likelihood Function for a Gaussian MA(q) Process --
_t5.6. The Likelihood Function for a Gaussian ARMA(p, q) Process --
_t5.7. Numerical Optimization --
_t5.8. Statistical Inference with Maximum Likelihood Estimation --
_t5.9. Inequality Constraints --
_tAPPENDIX 5. A. Proofs of Chapter 5 Propositions --
_tChapter 5 Exercises --
_tChapter 5 References --
_t6 Spectral Analysis --
_t6.1. The Population Spectrum --
_t6.2. The Sample Periodogram --
_t6.3. Estimating the Population Spectrum --
_t6.4. Uses of Spectral Analysis --
_tAPPENDIX 6. A. Proofs of Chapter 6 Propositions --
_tChapter 6 Exercises --
_tChapter 6 References --
_t7 Asymptotic Distribution Theory --
_t7.1. Review of Asymptotic Distribution Theory --
_t7.2. Limit Theorems for Serially Dependent Observations --
_tAPPENDIX 7.A. Proofs of Chapter 7 Propositions --
_tChapter 7 Exercises --
_tChapter 7 Exercises --
_t8 Linear Regression Models --
_t8.1. Review of Ordinary Least Squares with Deterministic Regressors and i.i.d. Gaussian Disturbances --
_t8.2. Ordinary Least Squares Under More General Conditions --
_t8.3. Generalized Least Squares --
_tAPPENDIX 8. A. Proofs of Chapter 8 Propositions --
_tChapter 8 Exercises --
_tChapter 8 References --
_t9 Linear Systems of Simultaneous Equations --
_t9.1. Simultaneous Equations Bias --
_t9.2. Instrumental Variables and Two-Stage Least Squares --
_t9.3. Identification --
_t9.4. Full-Information Maximum Likelihood Estimation --
_t9.5 Estimation Based on the Reduced Form --
_t9.6. Overview of Simultaneous Equations Bias --
_tAPPENDIX 9.A. Proofs of Chapter 9 Proposition --
_tChapter 9 Exercise --
_tChapter 9 References --
_t10 Covariance-Stationary Vector Processes --
_t10.1. Introduction to Vector Autoregressions --
_t10.2. Autocovariances and Convergence Results for Vector Processes --
_t10.3. The Autocovariance-Generating Function for Vector Processes --
_t10.4. The Spectrum for Vector Processes --
_t10.5. The Sample Mean of a Vector Process --
_tAPPENDIX 10.A. Proofs of Chapter 10 Propositions --
_tChapter 10 Exercises --
_tChapter 10 References --
_t11 Vector Autoregressions --
_t11.1. Maximum Likelihood Estimation and Hypothesis Testing for an Unrestricted Vector Autoregression --
_t11.2. Bivariate Granger Causality Tests --
_t11.3. Maximum Likelihood Estimation of Restricted Vector Autoregressions --
_t11.4. The Impulse-Response Function --
_t11.5. Variance Decomposition --
_t11.6. Vector Autoregressions and Structural Econometric Models --
_t11.7. Standard Errors for Impulse-Response Functions --
_tAPPENDIX 11. A. Proofs of Chapter 11 Propositions --
_tAPPENDIX 11.B. Calculation of Analytic Derivatives --
_tChapter 11 Exercises --
_tChapter 11 References --
_t12 Bayesian Analysis --
_t12.1. Introduction to Bayesian Analysis --
_t12.2. Bayesian Analysis of Vector Autoregressions --
_t12.3. Numerical Bayesian Methods --
_tAPPENDIX 12.A. Proofs of Chapter 12 Propositions --
_tChapter 12 Exercise --
_tChapter 12 References --
_t13 The Kalman Filter --
_t13.1. The State-Space Representation of a Dynamic System --
_t13.2. Derivation of the Kalman Filter --
_t13.3. Forecasts Based on the State-Space Representation --
_t13.4. Maximum Likelihood Estimation --
_t13.5. The Steady-State Kalman Filter --
_t13.6. Smoothing --
_t13.7. Statistical Inference with the Kalman Filter --
_t13.8. Time-Varying Parameters --
_tAPPENDIX 13. A. Proofs of Chapter 13 Propositions --
_tChapter 13 Exercises --
_tChapter 13 References --
_t14 Generalized Method of Moments --
_t14.1. Estimation by the Generalized Method of Moments --
_t14.2. Examples --
_t14.3. Extensions --
_t14.4. GMM and Maximum Likelihood Estimation --
_tAPPENDIX 14. A. Proof of Chapter 14 Proposition --
_tChapter 14 Exercise --
_tChapter 14 References --
_t15 Models of Nonstationary Time Series --
_t15.1. Introduction --
_t15.2. Why Linear Time Trends and Unit Roots? --
_t15.3. Comparison of Trend-Stationary and Unit Root Processes --
_t15.4. The Meaning of Tests for Unit Roots --
_t15.5. Other Approaches to Trended Time Series --
_tAPPENDIX 15. A. Derivation of Selected Equations for Chapter 15 --
_tChapter 15 References --
_t16 Processes with Deterministic Time Trends --
_t16.1. Asymptotic Distribution of OLS Estimates of the Simple Time Trend Model --
_t16.2. Hypothesis Testing for the Simple Time Trend Model --
_t16.3. Asymptotic Inference for an Autoregressive Process Around a Deterministic Time Trend --
_tAPPENDIX 16. A. Derivation of Selected Equations for Chapter 16 --
_tChapter 16 Exercises --
_tChapter 16 References --
_t17 Univariate Processes with Unit Roots --
_t17.1. Introduction --
_t17.2. Brownian Motion --
_t17.3. The Functional Central Limit Theorem --
_t17.4. Asymptotic Properties of a First-Order Autoregression when the True Coefficient Is Unity --
_t17.5. Asymptotic Results for Unit Root Processes with General Serial Correlation --
_t17.6. Phillips-Perron Tests for Unit Roots --
_t17.7. Asymptotic Properties of a pth-Order Autoregression and the Augmented Dickey-Fuller Tests for Unit Roots --
_t17.8. Other Approaches to Testing for Unit Roots --
_t17.9. Bayesian Analysis and Unit Roots --
_tAPPENDIX 17.A. Proofs of Chapter 17 Propositions --
_tChapter 17 Exercises --
_tChapter 17 References --
_t18 Unit Roots in Multivariate Time Series --
_t18.1. Asymptotic Results for Nonstationary Vector Processes --
_t18.2. Vector Autoregressions Containing Unit Roots --
_t18.3. Spurious Regressions --
_tAPPENDIX 18.A. Proofs of Chapter 18 Propositions --
_tChapter 18 Exercises --
_tChapter 18 References --
_t19 Cointegration --
_t19.1. Introduction --
_t19.2. Testing the Null Hypothesis --
_t19.3. Testing Hypotheses About the Cointegrating Vector --
_tAPPENDIX 19. A. Proofs of Chapter 19 Propositions --
_tChapter 19 Exercises --
_tChapter 19 References --
_t20 Full-Information Maximum Likelihood Analysis of Cointegrated Systems --
_t20.1. Canonical Correlation --
_t20.2. Maximum Likelihood Estimation --
_t20.3. Hypothesis Testing --
_t20.4. Overview of Unit Roots-To Difference or Not to Difference? --
_tAPPENDIX 20.A. Proof of Chapter 20 Proposition --
_tChapter 20 Exercises --
_tChapter 20 References --
_t21 Time Series Models of Heteroskedasticity --
_t21.1. Autoregressive Conditional Heteroskedasticity (ARCH) --
_t21.2. Extensions --
_tAPPENDIX 21. A. Derivation of Selected Equations for Chapter 21 --
_tChapter 21 References --
_t22 Modeling Time Series with Changes in Regime --
_t22.1. Introduction --
_t22.2. Markov Chains --
_t22.3. Statistical Analysis of i.i.d. Mixture Distributions --
_t22.4.
505 0 0 _tTime Series Models of Changes in Regime --
_tAPPENDIX 22. A. Derivation of Selected Equations for Chapter 22 --
_tChapter 22 Exercise --
_tChapter 22 Reference --
_tA Mathematical Review --
_tA.1. Trigonometry --
_tA.2. Complex Numbers --
_tA.3. Calculus --
_tA.4. Matrix Algebra --
_tA.5. Probability and Statistics --
_tAppendix A References --
_tB Statistical Tables --
_tC Answers to Selected Exercises --
_tD Greek Letters and Mathematical Symbols Used in the Text --
_tAuthor Index --
_tSubject Index
506 0 _arestricted access
_uhttp://purl.org/coar/access_right/c_16ec
_fonline access with authorization
_2star
520 _aThe last decade has brought dramatic changes in the way that researchers analyze economic and financial time series. This book synthesizes these recent advances and makes them accessible to first-year graduate students. James Hamilton provides the first adequate text-book treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems (including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter) in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results. The book is intended to provide students and researchers with a self-contained survey of time series analysis. It starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.
538 _aMode of access: Internet via World Wide Web.
546 _aIn English.
588 0 _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2021)
650 0 _aTime-series analysis.
650 7 _aBUSINESS & ECONOMICS / Investments & Securities / General.
_2bisacsh
653 _aAbsolute summability.
653 _aAutocovariance.
653 _aBartlett kernel.
653 _aBlock exogeneity.
653 _aCointegrating vector.
653 _aConsumption spending.
653 _aCospectrum.
653 _aDickey-Fuller test.
653 _aEM algorithm.
653 _aExchange rates.
653 _aFilters.
653 _aFundamental innovation.
653 _aGamma distribution.
653 _aGlobal identification.
653 _aGross national product.
653 _aHessian matrix.
653 _aInequality constraints.
653 _aInvertibility.
653 _aJacobian matrix.
653 _aJoint density.
653 _aKhinchine's theorem.
653 _aKronecker product.
653 _aLagrange multiplier.
653 _aLoss function.
653 _aMean-value theorem.
653 _aMixingales.
653 _aMonte Carlo method.
653 _aNewton-Raphson.
653 _aOrder in probability.
653 _aOrthogonal.
653 _aPermanent income.
653 _aQuadrature spectrum.
653 _aRecessions.
653 _aReduced form.
653 _aSample periodogram.
653 _aStock prices.
653 _aTaylor series.
653 _aVech operator.
850 _aIT-RoAPU
856 4 0 _uhttps://doi.org/10.1515/9780691218632?locatt=mode:legacy
856 4 0 _uhttps://www.degruyter.com/isbn/9780691218632
856 4 2 _3Cover
_uhttps://www.degruyter.com/cover/covers/9780691218632.jpg
942 _cEB
999 _c195223
_d195223