000 07624nam a22017415i 4500
001 206053
003 IT-RoAPU
005 20221214233547.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 221201t20092009nju fo d z eng d
020 _a9781400833085
_qPDF
024 7 _a10.1515/9781400833085
_2doi
035 _a(DE-B1597)9781400833085
035 _a(DE-B1597)642799
040 _aDE-B1597
_beng
_cDE-B1597
_erda
050 4 _aHB135 .C657 2011
072 7 _aBUS021000
_2bisacsh
082 0 4 _a330.015195
084 _aonline - DeGruyter
100 1 _aCorbae, Dean
_eautore
245 1 3 _aAn Introduction to Mathematical Analysis for Economic Theory and Econometrics /
_cDean Corbae, Maxwell B. Stinchcombe, Juraj Zeman.
264 1 _aPrinceton, NJ :
_bPrinceton University Press,
_c[2009]
264 4 _c©2009
300 _a1 online resource (688 p.) :
_b55 line illus.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 0 _tFrontmatter --
_tContents --
_tPreface --
_tUser’s Guide --
_tNotation --
_tCHAPTER 1 Logic --
_tCHAPTER 2 Set Theory --
_tCHAPTER 3 The Space of Real Numbers --
_tCHAPTER 4 The Finite-Dimensional Metric Space of Real Vectors --
_tCHAPTER 5 Finite-Dimensional Convex Analysis --
_tCHAPTER 6 Metric Spaces --
_tCHAPTER 7 Measure Spaces and Probability --
_tCHAPTER 8 The Lp ( Ω, F, P) and lp Spaces, p ∈ [1,∞] --
_tCHAPTER 9 Probabilities on Metric Spaces --
_tCHAPTER 10 Infinite-Dimensional Convex Analysis --
_tCHAPTER 11 Expanded Spaces --
_tIndex
506 0 _arestricted access
_uhttp://purl.org/coar/access_right/c_16ec
_fonline access with authorization
_2star
520 _aProviding an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory
538 _aMode of access: Internet via World Wide Web.
546 _aIn English.
588 0 _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 01. Dez 2022)
650 0 _aBusiness.
650 0 _aEconometrics.
650 0 _aEconomics, Mathematical.
650 0 _aMathematical analysis.
650 7 _aBUSINESS & ECONOMICS / Econometrics.
_2bisacsh
653 _aApproximation.
653 _aAxiom of choice.
653 _aBanach space.
653 _aBijection.
653 _aBounded function.
653 _aBudget set.
653 _aCalculation.
653 _aCardinality.
653 _aCauchy sequence.
653 _aCentral limit theorem.
653 _aCombination.
653 _aCompact space.
653 _aComplete metric space.
653 _aConcave function.
653 _aConditional expectation.
653 _aContinuous function (set theory).
653 _aContinuous function.
653 _aContraction mapping.
653 _aContradiction.
653 _aConvex analysis.
653 _aConvex set.
653 _aCountable set.
653 _aDense set.
653 _aDifferentiable function.
653 _aDimension (vector space).
653 _aDimension.
653 _aDivision by zero.
653 _aDynamic programming.
653 _aEmpty set.
653 _aEquation.
653 _aEquivalence class.
653 _aEstimator.
653 _aExistential quantification.
653 _aFinite set.
653 _aFixed-point theorem.
653 _aFunction (mathematics).
653 _aHahn–Banach theorem.
653 _aIndependence (probability theory).
653 _aIndicator function.
653 _aInequality (mathematics).
653 _aInfimum and supremum.
653 _aIntermediate value theorem.
653 _aKarush–Kuhn–Tucker conditions.
653 _aLaw of large numbers.
653 _aLebesgue measure.
653 _aLimit of a sequence.
653 _aLimit superior and limit inferior.
653 _aLinear algebra.
653 _aLinear function.
653 _aLinear map.
653 _aLinear subspace.
653 _aLoss function.
653 _aMarkov chain.
653 _aMathematical optimization.
653 _aMathematics.
653 _aMaximal element.
653 _aMeasurable function.
653 _aMeasure (mathematics).
653 _aMetric space.
653 _aMonotonic function.
653 _aNormed vector space.
653 _aNull set.
653 _aOpen set.
653 _aOptimization problem.
653 _aParameter.
653 _aPareto efficiency.
653 _aPartially ordered set.
653 _aPreference (economics).
653 _aPreference relation.
653 _aProbability distribution.
653 _aProbability space.
653 _aProbability theory.
653 _aProbability.
653 _aQuantity.
653 _aRandom variable.
653 _aRational number.
653 _aReal number.
653 _aScientific notation.
653 _aSequence.
653 _aSet (mathematics).
653 _aSimple function.
653 _aSpecial case.
653 _aStochastic process.
653 _aStone–Weierstrass theorem.
653 _aSubsequence.
653 _aSubset.
653 _aSummation.
653 _aSurjective function.
653 _aTheorem.
653 _aTopological space.
653 _aTopology.
653 _aUncountable set.
653 _aUniform continuity.
653 _aUniform distribution (discrete).
653 _aUnion (set theory).
653 _aUpper and lower bounds.
653 _aUtility.
653 _aVariable (mathematics).
653 _aVector space.
653 _aZorn's lemma.
700 1 _aStinchcombe, Maxwell B.
_eautore
700 1 _aZeman, Juraj
_eautore
850 _aIT-RoAPU
856 4 0 _uhttps://doi.org/10.1515/9781400833085?locatt=mode:legacy
856 4 0 _uhttps://www.degruyter.com/isbn/9781400833085
856 4 2 _3Cover
_uhttps://www.degruyter.com/document/cover/isbn/9781400833085/original
942 _cEB
999 _c206053
_d206053