| 000 | 07624nam a22017415i 4500 | ||
|---|---|---|---|
| 001 | 206053 | ||
| 003 | IT-RoAPU | ||
| 005 | 20221214233547.0 | ||
| 006 | m|||||o||d|||||||| | ||
| 007 | cr || |||||||| | ||
| 008 | 221201t20092009nju fo d z eng d | ||
| 020 |
_a9781400833085 _qPDF |
||
| 024 | 7 |
_a10.1515/9781400833085 _2doi |
|
| 035 | _a(DE-B1597)9781400833085 | ||
| 035 | _a(DE-B1597)642799 | ||
| 040 |
_aDE-B1597 _beng _cDE-B1597 _erda |
||
| 050 | 4 | _aHB135 .C657 2011 | |
| 072 | 7 |
_aBUS021000 _2bisacsh |
|
| 082 | 0 | 4 | _a330.015195 |
| 084 | _aonline - DeGruyter | ||
| 100 | 1 |
_aCorbae, Dean _eautore |
|
| 245 | 1 | 3 |
_aAn Introduction to Mathematical Analysis for Economic Theory and Econometrics / _cDean Corbae, Maxwell B. Stinchcombe, Juraj Zeman. |
| 264 | 1 |
_aPrinceton, NJ : _bPrinceton University Press, _c[2009] |
|
| 264 | 4 | _c©2009 | |
| 300 |
_a1 online resource (688 p.) : _b55 line illus. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | 0 |
_tFrontmatter -- _tContents -- _tPreface -- _tUser’s Guide -- _tNotation -- _tCHAPTER 1 Logic -- _tCHAPTER 2 Set Theory -- _tCHAPTER 3 The Space of Real Numbers -- _tCHAPTER 4 The Finite-Dimensional Metric Space of Real Vectors -- _tCHAPTER 5 Finite-Dimensional Convex Analysis -- _tCHAPTER 6 Metric Spaces -- _tCHAPTER 7 Measure Spaces and Probability -- _tCHAPTER 8 The Lp ( Ω, F, P) and lp Spaces, p ∈ [1,∞] -- _tCHAPTER 9 Probabilities on Metric Spaces -- _tCHAPTER 10 Infinite-Dimensional Convex Analysis -- _tCHAPTER 11 Expanded Spaces -- _tIndex |
| 506 | 0 |
_arestricted access _uhttp://purl.org/coar/access_right/c_16ec _fonline access with authorization _2star |
|
| 520 | _aProviding an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory | ||
| 538 | _aMode of access: Internet via World Wide Web. | ||
| 546 | _aIn English. | ||
| 588 | 0 | _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 01. Dez 2022) | |
| 650 | 0 | _aBusiness. | |
| 650 | 0 | _aEconometrics. | |
| 650 | 0 | _aEconomics, Mathematical. | |
| 650 | 0 | _aMathematical analysis. | |
| 650 | 7 |
_aBUSINESS & ECONOMICS / Econometrics. _2bisacsh |
|
| 653 | _aApproximation. | ||
| 653 | _aAxiom of choice. | ||
| 653 | _aBanach space. | ||
| 653 | _aBijection. | ||
| 653 | _aBounded function. | ||
| 653 | _aBudget set. | ||
| 653 | _aCalculation. | ||
| 653 | _aCardinality. | ||
| 653 | _aCauchy sequence. | ||
| 653 | _aCentral limit theorem. | ||
| 653 | _aCombination. | ||
| 653 | _aCompact space. | ||
| 653 | _aComplete metric space. | ||
| 653 | _aConcave function. | ||
| 653 | _aConditional expectation. | ||
| 653 | _aContinuous function (set theory). | ||
| 653 | _aContinuous function. | ||
| 653 | _aContraction mapping. | ||
| 653 | _aContradiction. | ||
| 653 | _aConvex analysis. | ||
| 653 | _aConvex set. | ||
| 653 | _aCountable set. | ||
| 653 | _aDense set. | ||
| 653 | _aDifferentiable function. | ||
| 653 | _aDimension (vector space). | ||
| 653 | _aDimension. | ||
| 653 | _aDivision by zero. | ||
| 653 | _aDynamic programming. | ||
| 653 | _aEmpty set. | ||
| 653 | _aEquation. | ||
| 653 | _aEquivalence class. | ||
| 653 | _aEstimator. | ||
| 653 | _aExistential quantification. | ||
| 653 | _aFinite set. | ||
| 653 | _aFixed-point theorem. | ||
| 653 | _aFunction (mathematics). | ||
| 653 | _aHahn–Banach theorem. | ||
| 653 | _aIndependence (probability theory). | ||
| 653 | _aIndicator function. | ||
| 653 | _aInequality (mathematics). | ||
| 653 | _aInfimum and supremum. | ||
| 653 | _aIntermediate value theorem. | ||
| 653 | _aKarush–Kuhn–Tucker conditions. | ||
| 653 | _aLaw of large numbers. | ||
| 653 | _aLebesgue measure. | ||
| 653 | _aLimit of a sequence. | ||
| 653 | _aLimit superior and limit inferior. | ||
| 653 | _aLinear algebra. | ||
| 653 | _aLinear function. | ||
| 653 | _aLinear map. | ||
| 653 | _aLinear subspace. | ||
| 653 | _aLoss function. | ||
| 653 | _aMarkov chain. | ||
| 653 | _aMathematical optimization. | ||
| 653 | _aMathematics. | ||
| 653 | _aMaximal element. | ||
| 653 | _aMeasurable function. | ||
| 653 | _aMeasure (mathematics). | ||
| 653 | _aMetric space. | ||
| 653 | _aMonotonic function. | ||
| 653 | _aNormed vector space. | ||
| 653 | _aNull set. | ||
| 653 | _aOpen set. | ||
| 653 | _aOptimization problem. | ||
| 653 | _aParameter. | ||
| 653 | _aPareto efficiency. | ||
| 653 | _aPartially ordered set. | ||
| 653 | _aPreference (economics). | ||
| 653 | _aPreference relation. | ||
| 653 | _aProbability distribution. | ||
| 653 | _aProbability space. | ||
| 653 | _aProbability theory. | ||
| 653 | _aProbability. | ||
| 653 | _aQuantity. | ||
| 653 | _aRandom variable. | ||
| 653 | _aRational number. | ||
| 653 | _aReal number. | ||
| 653 | _aScientific notation. | ||
| 653 | _aSequence. | ||
| 653 | _aSet (mathematics). | ||
| 653 | _aSimple function. | ||
| 653 | _aSpecial case. | ||
| 653 | _aStochastic process. | ||
| 653 | _aStone–Weierstrass theorem. | ||
| 653 | _aSubsequence. | ||
| 653 | _aSubset. | ||
| 653 | _aSummation. | ||
| 653 | _aSurjective function. | ||
| 653 | _aTheorem. | ||
| 653 | _aTopological space. | ||
| 653 | _aTopology. | ||
| 653 | _aUncountable set. | ||
| 653 | _aUniform continuity. | ||
| 653 | _aUniform distribution (discrete). | ||
| 653 | _aUnion (set theory). | ||
| 653 | _aUpper and lower bounds. | ||
| 653 | _aUtility. | ||
| 653 | _aVariable (mathematics). | ||
| 653 | _aVector space. | ||
| 653 | _aZorn's lemma. | ||
| 700 | 1 |
_aStinchcombe, Maxwell B. _eautore |
|
| 700 | 1 |
_aZeman, Juraj _eautore |
|
| 850 | _aIT-RoAPU | ||
| 856 | 4 | 0 | _uhttps://doi.org/10.1515/9781400833085?locatt=mode:legacy |
| 856 | 4 | 0 | _uhttps://www.degruyter.com/isbn/9781400833085 |
| 856 | 4 | 2 |
_3Cover _uhttps://www.degruyter.com/document/cover/isbn/9781400833085/original |
| 942 | _cEB | ||
| 999 |
_c206053 _d206053 |
||