000 08059nam a22017055i 4500
001 206821
003 IT-RoAPU
005 20221214233620.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 221201t20122007nju fo d z eng d
020 _a9781400845651
_qPDF
024 7 _a10.1515/9781400845651
_2doi
035 _a(DE-B1597)9781400845651
035 _a(DE-B1597)642796
040 _aDE-B1597
_beng
_cDE-B1597
_erda
050 4 _aHB141
072 7 _aBUS021000
_2bisacsh
082 0 4 _a330.015195
084 _aonline - DeGruyter
100 1 _aHendry, David F.
_eautore
245 1 0 _aEconometric Modeling :
_bA Likelihood Approach /
_cDavid F. Hendry, Bent Nielsen.
264 1 _aPrinceton, NJ :
_bPrinceton University Press,
_c[2012]
264 4 _c©2007
300 _a1 online resource (384 p.) :
_b50 line illus.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 0 _tFrontmatter --
_tContents --
_tPreface --
_tData and software --
_tChapter One. The Bernoulli model --
_tChapter Two. Inference in the Bernoulli model --
_tChapter Three. A first regression model --
_tChapter Four. The logit model --
_tChapter Five. The two-variable regression model --
_tChapter Six. The matrix algebra of two-variable regression --
_tChapter Seven. The multiple regression model --
_tChapter Eight. The matrix algebra of multiple regression --
_tChapter Nine. Mis-specification analysis in cross sections --
_tChapter Ten. Strong exogeneity --
_tChapter Eleven. Empirical models and modeling --
_tChapter Twelve. Autoregressions and stationarity --
_tChapter Thirteen. Mis-specification analysis in time series --
_tChapter Fourteen. The vector autoregressive model --
_tChapter Fifteen. Identification of structural models --
_tChapter Sixteen. Non-stationary time series --
_tChapter Seventeen. Cointegration --
_tChapter Eighteen. Monte Carlo simulation experiments --
_tChapter Nineteen. Automatic model selection --
_tChapter Twenty. Structural breaks --
_tChapter Twenty One. Forecasting --
_tChapter Twenty Two. The way ahead --
_tReferences --
_tAuthor index --
_tSubject index
506 0 _arestricted access
_uhttp://purl.org/coar/access_right/c_16ec
_fonline access with authorization
_2star
520 _aEconometric Modeling provides a new and stimulating introduction to econometrics, focusing on modeling. The key issue confronting empirical economics is to establish sustainable relationships that are both supported by data and interpretable from economic theory. The unified likelihood-based approach of this book gives students the required statistical foundations of estimation and inference, and leads to a thorough understanding of econometric techniques. David Hendry and Bent Nielsen introduce modeling for a range of situations, including binary data sets, multiple regression, and cointegrated systems. In each setting, a statistical model is constructed to explain the observed variation in the data, with estimation and inference based on the likelihood function. Substantive issues are always addressed, showing how both statistical and economic assumptions can be tested and empirical results interpreted. Important empirical problems such as structural breaks, forecasting, and model selection are covered, and Monte Carlo simulation is explained and applied. Econometric Modeling is a self-contained introduction for advanced undergraduate or graduate students. Throughout, data illustrate and motivate the approach, and are available for computer-based teaching. Technical issues from probability theory and statistical theory are introduced only as needed. Nevertheless, the approach is rigorous, emphasizing the coherent formulation, estimation, and evaluation of econometric models relevant for empirical research.
538 _aMode of access: Internet via World Wide Web.
546 _aIn English.
588 0 _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 01. Dez 2022)
650 0 _aEconometric models.
650 0 _aEconometrics.
650 7 _aBUSINESS & ECONOMICS / Econometrics.
_2bisacsh
653 _aAccuracy and precision.
653 _aAsymptotic distribution.
653 _aAutocorrelation.
653 _aAutoregressive conditional heteroskedasticity.
653 _aAutoregressive model.
653 _aBayesian statistics.
653 _aBayesian.
653 _aBernoulli distribution.
653 _aBias of an estimator.
653 _aCalculation.
653 _aCentral limit theorem.
653 _aChow test.
653 _aCointegration.
653 _aConditional expectation.
653 _aConditional probability distribution.
653 _aConfidence interval.
653 _aConfidence region.
653 _aCorrelation and dependence.
653 _aCorrelogram.
653 _aCount data.
653 _aCross-sectional data.
653 _aCross-sectional regression.
653 _aDistribution function.
653 _aDummy variable (statistics).
653 _aEconometric model.
653 _aEmpirical distribution function.
653 _aEquation.
653 _aError term.
653 _aEstimation.
653 _aEstimator.
653 _aExogeny.
653 _aExploratory data analysis.
653 _aF-distribution.
653 _aF-test.
653 _aFair coin.
653 _aForecast error.
653 _aForecasting.
653 _aGranger causality.
653 _aHeteroscedasticity.
653 _aInference.
653 _aInstrumental variable.
653 _aJoint probability distribution.
653 _aLaw of large numbers.
653 _aLeast absolute deviations.
653 _aLeast squares.
653 _aLikelihood function.
653 _aLikelihood-ratio test.
653 _aLinear regression.
653 _aLogistic regression.
653 _aLucas critique.
653 _aMarginal distribution.
653 _aMarkov process.
653 _aMathematical optimization.
653 _aMaximum likelihood estimation.
653 _aModel selection.
653 _aMonte Carlo method.
653 _aMoving-average model.
653 _aMultiple correlation.
653 _aMultivariate normal distribution.
653 _aNonparametric regression.
653 _aNormal distribution.
653 _aNormality test.
653 _aOne-Tailed Test.
653 _aOpportunity cost.
653 _aOrthogonalization.
653 _aP-value.
653 _aParameter.
653 _aPartial correlation.
653 _aPoisson regression.
653 _aProbability.
653 _aProbit model.
653 _aQuantile.
653 _aQuantity.
653 _aQuasi-likelihood.
653 _aRandom variable.
653 _aRegression analysis.
653 _aResidual sum of squares.
653 _aRound-off error.
653 _aSeemingly unrelated regressions.
653 _aSelection bias.
653 _aSimple linear regression.
653 _aSkewness.
653 _aStandard deviation.
653 _aStandard error.
653 _aStationary process.
653 _aStatistic.
653 _aStudent's t-test.
653 _aSufficient statistic.
653 _aSummary statistics.
653 _aT-statistic.
653 _aTest statistic.
653 _aTime series.
653 _aType I and type II errors.
653 _aUnit root test.
653 _aUnit root.
653 _aUtility.
653 _aVariable (mathematics).
653 _aVariance.
653 _aVector autoregression.
653 _aWhite test.
700 1 _aNielsen, Bent
_eautore
850 _aIT-RoAPU
856 4 0 _uhttps://doi.org/10.1515/9781400845651?locatt=mode:legacy
856 4 0 _uhttps://www.degruyter.com/isbn/9781400845651
856 4 2 _3Cover
_uhttps://www.degruyter.com/document/cover/isbn/9781400845651/original
942 _cEB
999 _c206821
_d206821