000 04493nam a22005415i 4500
001 208541
003 IT-RoAPU
005 20221214233728.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 210830t20151973nju fo d z eng d
020 _a9780691619194
_qprint
020 _a9781400868339
_qPDF
024 7 _a10.1515/9781400868339
_2doi
035 _a(DE-B1597)9781400868339
035 _a(DE-B1597)454193
035 _a(OCoLC)979905531
040 _aDE-B1597
_beng
_cDE-B1597
_erda
050 4 _aHM73 -- F58 1973eb
072 7 _aSOC026000
_2bisacsh
082 0 4 _a301.15540151
084 _aonline - DeGruyter
100 1 _aFishburn, Peter C.
_eautore
245 1 4 _aThe Theory of Social Choice /
_cPeter C. Fishburn.
264 1 _aPrinceton, NJ :
_bPrinceton University Press,
_c[2015]
264 4 _c©1973
300 _a1 online resource (278 p.)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 0 _aPrinceton Legacy Library ;
_v1757
505 0 0 _tFrontmatter --
_tPREFACE AND ACKNOWLEDGMENTS --
_tCONTENTS --
_tCHAPTER 1 Introduction --
_tPART I. SOCIAL CHOICE WITH TWO ALTERNATIVES --
_tCHAPTER 2. Social Choice Functions for Two Alternatives --
_tCHAPTER 3. Duality and Representative Systems --
_tCHAPTER 4. Decisive Coalitions and Representative Systems --
_tCHAPTER 5. Weighted Voting and Anonymous Choice Functions --
_tCHAPTER 6. Strong Decisiveness and Special Majorities --
_tPART II. SIMPLE MAJORITY SOCIAL CHOICE --
_tCHAPTER 7. Binary Relations and Binary Choices --
_tCHAPTER 8. Simple Majority Social Choice --
_tCHAPTER 9. Single-Peaked Preferences --
_tCHAPTER 10. Guarantees and Triples --
_tCHAPTER 11. Transitive Majorities --
_tCHAPTER 12. Condorcet Conditions --
_tCHAPTER 13. From Borda to Dodgson --
_tPART III. SOCIAL CHOICE FUNCTIONS --
_tCHAPTER 14. Conditions for Social Choice --
_tCHAPTER 15. Choice Functions and Passive Intraprofile Conditions --
_tCHAPTER 16. Arrow's Impossibility Theorem --
_tCHAPTER 17. Summation Social Choice Functions --
_tCHAPTER 18. Lotteries on Social Alternatives --
_tREFERENCES --
_tINDEX
506 0 _arestricted access
_uhttp://purl.org/coar/access_right/c_16ec
_fonline access with authorization
_2star
520 _aOne fundamental premise of democratic theory is that social policy, group choice, or collective action should be based on the preferences of the individuals in the society, group, or collective. Using the tools of formal mathematical analysis, Peter C. Fishburn explores and defines the conditions for social choice and methods for synthesizing individuals' preferences. This study is unique in its emphasis on social choice functions, the general position that individual indifference may not be transitive, and the use of certain mathematics such as linear algebra.The text is divided into three main parts: social choice between two alternatives, which examines a variety of majority-like functions; simple majority social choice, which focuses on social choice among many alternatives when two-element feasible subset choices are based on simple majority; and a general study of aspects and types of social choice functions for many alternatives.Originally published in 1973.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
530 _aIssued also in print.
538 _aMode of access: Internet via World Wide Web.
546 _aIn English.
588 0 _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2021)
650 0 _aSocial Sciences
_xSociology
_xSociology, other.
650 0 _aSocial choice.
650 7 _aSOCIAL SCIENCE / Sociology / General.
_2bisacsh
850 _aIT-RoAPU
856 4 0 _uhttps://doi.org/10.1515/9781400868339
856 4 0 _uhttps://www.degruyter.com/isbn/9781400868339
856 4 2 _3Cover
_uhttps://www.degruyter.com/cover/covers/9781400868339.jpg
942 _cEB
999 _c208541
_d208541