| 000 | 05039nam a22007815i 4500 | ||
|---|---|---|---|
| 001 | 240232 | ||
| 003 | IT-RoAPU | ||
| 005 | 20230501183038.0 | ||
| 006 | m|||||o||d|||||||| | ||
| 007 | cr || |||||||| | ||
| 008 | 230228t20182018gw fo d z eng d | ||
| 020 |
_a9783110563658 _qprint |
||
| 020 |
_a9783110565270 _qEPUB |
||
| 020 |
_a9783110565959 _qPDF |
||
| 024 | 7 |
_a10.1515/9783110565959 _2doi |
|
| 035 | _a(DE-B1597)9783110565959 | ||
| 035 | _a(DE-B1597)488110 | ||
| 035 | _a(OCoLC)1037983198 | ||
| 040 |
_aDE-B1597 _beng _cDE-B1597 _erda |
||
| 050 | 4 |
_aQA31 _b.R48 2018 |
|
| 072 | 7 |
_aHIS002000 _2bisacsh |
|
| 082 | 0 | 4 |
_a510.938 _223 |
| 084 | _aonline - DeGruyter | ||
| 245 | 0 | 0 |
_aRevolutions and Continuity in Greek Mathematics / _ced. by Michalis Sialaros. |
| 264 | 1 |
_aBerlin ; _aBoston : _bDe Gruyter, _c[2018] |
|
| 264 | 4 | _c©2018 | |
| 300 | _a1 online resource (X, 391 p.) | ||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 0 |
_aScience, Technology, and Medicine in Ancient Cultures , _x2194-976X ; _v8 |
|
| 505 | 0 | 0 |
_tFrontmatter -- _tPreface -- _tContents -- _tNotes on Contributors -- _tIntroduction: Revolutions in Greek Mathematics -- _tCounter-Revolutions in Mathematics -- _tDiophantus and Premodern Algebra: New Light on an Old Image -- _tGeometer, in a Landscape: Embodied Mathematics in Hero’s Dioptra -- _tHow Much Does a Theorem Cost? -- _tDiagrammatizing Mathematics: Some Remarks on a Revolutionary Aspect of Ancient Greek Mathematics -- _tComposition and Removal of Ratios in Geometric and Logistic Texts from the Hellenistic to the Byzantine Period -- _tWhy Did the Greeks Develop Proportion Theory? A Conjecture -- _tRecursive Knowledge Procedures Informing the Design of the Parthenon : One Instance of Continuity between Greek and Near Eastern Mathematical Practices -- _tDiophantus, al-Karajī, and Quadratic Equations -- _tSubstantiae sunt sicut numeri: Aristotle on the Structure of Numbers -- _tThe Axiomatization of Mathematics and Plato’s Conception of Knowledge in the Meno and the Republic -- _tThe Anthyphairetic Revolutions of the Platonic Ideas -- _tName index -- _tGeneral index |
| 506 | 0 |
_arestricted access _uhttp://purl.org/coar/access_right/c_16ec _fonline access with authorization _2star |
|
| 520 | _aThis volume brings together a number of leading scholars working in the field of ancient Greek mathematics to present their latest research. In their respective area of specialization, all contributors offer stimulating approaches to questions of historical and historiographical ‘revolutions’ and ‘continuity’. Taken together, they provide a powerful lens for evaluating the applicability of Thomas Kuhn’s ideas on ‘scientific revolutions’ to the discipline of ancient Greek mathematics. Besides the latest historiographical studies on ‘geometrical algebra’ and ‘premodern algebra’, the reader will find here some papers which offer new insights into the controversial relationship between Greek and pre-Hellenic mathematical practices. Some other contributions place emphasis on the other edge of the historical spectrum, by exploring historical lines of ‘continuity’ between ancient Greek, Byzantine and post-Hellenic mathematics. The terminology employed by Greek mathematicians, along with various non-textual and material elements, is another topic which some of the essays in the volume explore. Finally, the last three articles focus on a traditionally rich source on ancient Greek mathematics; namely the works of Plato and Aristotle. | ||
| 530 | _aIssued also in print. | ||
| 538 | _aMode of access: Internet via World Wide Web. | ||
| 546 | _aIn English. | ||
| 588 | 0 | _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 28. Feb 2023) | |
| 650 | 0 |
_aGeometry _xHistory. |
|
| 650 | 0 | _aMathematics, Greek. | |
| 650 | 4 | _aAltertum. | |
| 650 | 4 | _aMathematik. | |
| 650 | 4 | _aRevolution. | |
| 650 | 4 | _aThomas Kuhn. | |
| 650 | 7 |
_aHISTORY / Ancient / General. _2bisacsh |
|
| 653 | _aGreek Mathematics. | ||
| 653 | _aScientific Revolutions. | ||
| 653 | _aThomas Kuhn. | ||
| 700 | 1 |
_aAcerbi, Fabio _eautore |
|
| 700 | 1 |
_aChristianidis, Jean _eautore |
|
| 700 | 1 |
_aGalluzzo, Gabriele _eautore |
|
| 700 | 1 |
_aKarasmanis, Vassilis _eautore |
|
| 700 | 1 |
_aLattmann, Claas _eautore |
|
| 700 | 1 |
_aLehman, Geoff _eautore |
|
| 700 | 1 |
_aMendell, Henry _eautore |
|
| 700 | 1 |
_aNegrepontis, Stelios _eautore |
|
| 700 | 1 |
_aOaks, Jeffrey A. _eautore |
|
| 700 | 1 |
_aRoby, Courtney _eautore |
|
| 700 | 1 |
_aSialaros, Michalis _eautore _ecuratore |
|
| 700 | 1 |
_aUnguru, Sabetai _eautore |
|
| 700 | 1 |
_aWeinman, Michael _eautore |
|
| 850 | _aIT-RoAPU | ||
| 856 | 4 | 0 | _uhttps://doi.org/10.1515/9783110565959 |
| 856 | 4 | 0 | _uhttps://www.degruyter.com/isbn/9783110565959 |
| 856 | 4 | 2 |
_3Cover _uhttps://www.degruyter.com/document/cover/isbn/9783110565959/original |
| 942 | _cEB | ||
| 999 |
_c240232 _d240232 |
||