| 000 | 05087nam a22008055i 4500 | ||
|---|---|---|---|
| 001 | 241810 | ||
| 003 | IT-RoAPU | ||
| 005 | 20221214235932.0 | ||
| 006 | m|||||o||d|||||||| | ||
| 007 | cr || |||||||| | ||
| 008 | 221201t20212021gw fo d z eng d | ||
| 020 |
_a9783110671100 _qprint |
||
| 020 |
_a9783110671209 _qEPUB |
||
| 020 |
_a9783110671124 _qPDF |
||
| 024 | 7 |
_a10.1515/9783110671124 _2doi |
|
| 035 | _a(DE-B1597)9783110671124 | ||
| 035 | _a(DE-B1597)534678 | ||
| 035 | _a(OCoLC)1243310393 | ||
| 040 |
_aDE-B1597 _beng _cDE-B1597 _erda |
||
| 050 | 4 |
_aQA76.9.D343 _bV36 2021 |
|
| 072 | 7 |
_aBUS065000 _2bisacsh |
|
| 084 | _aonline - DeGruyter | ||
| 100 | 1 |
_aVandeput, Nicolas _eautore |
|
| 245 | 1 | 0 |
_aData Science for Supply Chain Forecasting / _cNicolas Vandeput. |
| 250 | _a2nd ed. | ||
| 264 | 1 |
_aBerlin ; _aBoston : _bDe Gruyter, _c[2021] |
|
| 264 | 4 | _c©2021 | |
| 300 | _a1 online resource (XXVIII, 282 p.) | ||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | 0 |
_tFrontmatter -- _tAcknowledgments -- _tAbout the Author -- _tForeword – Second Edition -- _tForeword – First Edition -- _tContents -- _tIntroduction -- _tPart I: Statistical Forecasting -- _t1 Moving Average -- _t2 Forecast KPI -- _t3 Exponential Smoothing -- _t4 Underfitting -- _t5 Double Exponential Smoothing -- _t6 Model Optimization -- _t7 Double Smoothing with Damped Trend -- _t8 Overfitting -- _t9 Triple Exponential Smoothing -- _t10 Outliers -- _t11 Triple Additive Exponential Smoothing -- _tPart II: Machine Learning -- _t12 Machine Learning -- _t13 Tree -- _t14 Parameter Optimization -- _t15 Forest -- _t16 Feature Importance -- _t17 Extremely Randomized Trees -- _t18 Feature Optimization #1 -- _t19 Adaptive Boosting -- _t20 Demand Drivers and Leading Indicators -- _t21 Extreme Gradient Boosting -- _t22 Categorical Features -- _t23 Clustering -- _t24 Feature Optimization #2 -- _t25 Neural Networks -- _tPart III: Data-Driven Forecasting Process Management -- _t26 Judgmental Forecasts -- _t27 Forecast Value Added -- _tNow It’s Your Turn! -- _tA Python -- _tBibliography -- _tGlossary -- _tIndex |
| 506 | 0 |
_arestricted access _uhttp://purl.org/coar/access_right/c_16ec _fonline access with authorization _2star |
|
| 520 | _aUsing data science in order to solve a problem requires a scientific mindset more than coding skills. Data Science for Supply Chain Forecasting, Second Edition contends that a true scientific method which includes experimentation, observation, and constant questioning must be applied to supply chains to achieve excellence in demand forecasting. This second edition adds more than 45 percent extra content with four new chapters including an introduction to neural networks and the forecast value added framework. Part I focuses on statistical "traditional" models, Part II, on machine learning, and the all-new Part III discusses demand forecasting process management. The various chapters focus on both forecast models and new concepts such as metrics, underfitting, overfitting, outliers, feature optimization, and external demand drivers. The book is replete with do-it-yourself sections with implementations provided in Python (and Excel for the statistical models) to show the readers how to apply these models themselves. This hands-on book, covering the entire range of forecasting—from the basics all the way to leading-edge models—will benefit supply chain practitioners, forecasters, and analysts looking to go the extra mile with demand forecasting. | ||
| 530 | _aIssued also in print. | ||
| 538 | _aMode of access: Internet via World Wide Web. | ||
| 546 | _aIn English. | ||
| 588 | 0 | _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 01. Dez 2022) | |
| 650 | 0 |
_aBusiness forecasting _xData processing. |
|
| 650 | 0 |
_aData mining _xStatistical methods. |
|
| 650 | 0 | _aPython (Computer program language). | |
| 650 | 7 |
_aBUSINESS & ECONOMICS / Total Quality Management. _2bisacsh |
|
| 653 | _aData science. | ||
| 653 | _aDe Gruyter. | ||
| 653 | _aForecasting. | ||
| 653 | _aMachine learning. | ||
| 653 | _aNicolas Vandeput. | ||
| 653 | _aOverfit. | ||
| 653 | _aPython. | ||
| 653 | _aSKU Science. | ||
| 653 | _aSupChains. | ||
| 653 | _aSupply chain forecasting. | ||
| 653 | _aSupply chain. | ||
| 653 | _aUnderfit. | ||
| 653 | _ademand forecasting. | ||
| 653 | _ainventory optimisation. | ||
| 653 | _ainventory optimization. | ||
| 653 | _amulti-echelon optimisation. | ||
| 653 | _amulti-echelon optimization. | ||
| 653 | _asupply chain data science. | ||
| 653 | _asupply chain management. | ||
| 700 | 1 |
_aMakridakis, Spyros _eautore |
|
| 700 | 1 |
_aNdiaye, Alassane B. _eautore |
|
| 850 | _aIT-RoAPU | ||
| 856 | 4 | 0 | _uhttps://doi.org/10.1515/9783110671124 |
| 856 | 4 | 0 | _uhttps://www.degruyter.com/isbn/9783110671124 |
| 856 | 4 | 2 |
_3Cover _uhttps://www.degruyter.com/document/cover/isbn/9783110671124/original |
| 942 | _cEB | ||
| 999 |
_c241810 _d241810 |
||