000 05087nam a22008055i 4500
001 241810
003 IT-RoAPU
005 20221214235932.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 221201t20212021gw fo d z eng d
020 _a9783110671100
_qprint
020 _a9783110671209
_qEPUB
020 _a9783110671124
_qPDF
024 7 _a10.1515/9783110671124
_2doi
035 _a(DE-B1597)9783110671124
035 _a(DE-B1597)534678
035 _a(OCoLC)1243310393
040 _aDE-B1597
_beng
_cDE-B1597
_erda
050 4 _aQA76.9.D343
_bV36 2021
072 7 _aBUS065000
_2bisacsh
084 _aonline - DeGruyter
100 1 _aVandeput, Nicolas
_eautore
245 1 0 _aData Science for Supply Chain Forecasting /
_cNicolas Vandeput.
250 _a2nd ed.
264 1 _aBerlin ;
_aBoston :
_bDe Gruyter,
_c[2021]
264 4 _c©2021
300 _a1 online resource (XXVIII, 282 p.)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 0 _tFrontmatter --
_tAcknowledgments --
_tAbout the Author --
_tForeword – Second Edition --
_tForeword – First Edition --
_tContents --
_tIntroduction --
_tPart I: Statistical Forecasting --
_t1 Moving Average --
_t2 Forecast KPI --
_t3 Exponential Smoothing --
_t4 Underfitting --
_t5 Double Exponential Smoothing --
_t6 Model Optimization --
_t7 Double Smoothing with Damped Trend --
_t8 Overfitting --
_t9 Triple Exponential Smoothing --
_t10 Outliers --
_t11 Triple Additive Exponential Smoothing --
_tPart II: Machine Learning --
_t12 Machine Learning --
_t13 Tree --
_t14 Parameter Optimization --
_t15 Forest --
_t16 Feature Importance --
_t17 Extremely Randomized Trees --
_t18 Feature Optimization #1 --
_t19 Adaptive Boosting --
_t20 Demand Drivers and Leading Indicators --
_t21 Extreme Gradient Boosting --
_t22 Categorical Features --
_t23 Clustering --
_t24 Feature Optimization #2 --
_t25 Neural Networks --
_tPart III: Data-Driven Forecasting Process Management --
_t26 Judgmental Forecasts --
_t27 Forecast Value Added --
_tNow It’s Your Turn! --
_tA Python --
_tBibliography --
_tGlossary --
_tIndex
506 0 _arestricted access
_uhttp://purl.org/coar/access_right/c_16ec
_fonline access with authorization
_2star
520 _aUsing data science in order to solve a problem requires a scientific mindset more than coding skills. Data Science for Supply Chain Forecasting, Second Edition contends that a true scientific method which includes experimentation, observation, and constant questioning must be applied to supply chains to achieve excellence in demand forecasting. This second edition adds more than 45 percent extra content with four new chapters including an introduction to neural networks and the forecast value added framework. Part I focuses on statistical "traditional" models, Part II, on machine learning, and the all-new Part III discusses demand forecasting process management. The various chapters focus on both forecast models and new concepts such as metrics, underfitting, overfitting, outliers, feature optimization, and external demand drivers. The book is replete with do-it-yourself sections with implementations provided in Python (and Excel for the statistical models) to show the readers how to apply these models themselves. This hands-on book, covering the entire range of forecasting—from the basics all the way to leading-edge models—will benefit supply chain practitioners, forecasters, and analysts looking to go the extra mile with demand forecasting.
530 _aIssued also in print.
538 _aMode of access: Internet via World Wide Web.
546 _aIn English.
588 0 _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 01. Dez 2022)
650 0 _aBusiness forecasting
_xData processing.
650 0 _aData mining
_xStatistical methods.
650 0 _aPython (Computer program language).
650 7 _aBUSINESS & ECONOMICS / Total Quality Management.
_2bisacsh
653 _aData science.
653 _aDe Gruyter.
653 _aForecasting.
653 _aMachine learning.
653 _aNicolas Vandeput.
653 _aOverfit.
653 _aPython.
653 _aSKU Science.
653 _aSupChains.
653 _aSupply chain forecasting.
653 _aSupply chain.
653 _aUnderfit.
653 _ademand forecasting.
653 _ainventory optimisation.
653 _ainventory optimization.
653 _amulti-echelon optimisation.
653 _amulti-echelon optimization.
653 _asupply chain data science.
653 _asupply chain management.
700 1 _aMakridakis, Spyros
_eautore
700 1 _aNdiaye, Alassane B.
_eautore
850 _aIT-RoAPU
856 4 0 _uhttps://doi.org/10.1515/9783110671124
856 4 0 _uhttps://www.degruyter.com/isbn/9783110671124
856 4 2 _3Cover
_uhttps://www.degruyter.com/document/cover/isbn/9783110671124/original
942 _cEB
999 _c241810
_d241810