000 05738nam a22004935i 4500
001 276212
003 IT-RoAPU
005 20221215002123.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 221201t20221972gw fo d z eng d
019 _a(OCoLC)1302162292
020 _a9783112564097
_qprint
020 _a9783112564103
_qPDF
024 7 _a10.1515/9783112564103
_2doi
035 _a(DE-B1597)9783112564103
035 _a(DE-B1597)607272
035 _a(OCoLC)1301550175
040 _aDE-B1597
_beng
_cDE-B1597
_erda
072 7 _aMAT037000
_2bisacsh
084 _aonline - DeGruyter
100 1 _aPietsch, Albrecht
_eautore
245 1 0 _aNuclear Locally Convex Spaces /
_cAlbrecht Pietsch.
250 _aTranslated from the 2nd German Ed. by William H. Ruckle, 1969, Reprint 2021
264 1 _aBerlin ;
_aBoston :
_bDe Gruyter,
_c[2022]
264 4 _c©1972
300 _a1 online resource (204 p.)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 0 _tFrontmatter --
_tForeword to the First Edition --
_tForeword to the Second Edition --
_tContents --
_tChapter O. Foundations --
_t0.1. Topological Spaces --
_t0.2. Metric Spaces --
_t0.3. Linear Spaces --
_t0.4. Semi-Norms --
_t0.5. Locally Convex Spaces --
_t0.6. The Topological Dual of a Locally Convex Space --
_t0.7. Special Locally Convex Spaces --
_t0.8. Banach Spaces --
_t0.9. Hilbert Spaces --
_t0.10. Continuous Linear Mappings in Locally Convex Spaces --
_t0.11. The Normed Spaces Associated 'with a Locally Convex Space --
_t0.12. Radon Measures --
_tChapter 1. Summable Families --
_t1.1. Summable Families of Numbers --
_t1.2. Weakly Summable Families in Locally Convex Spaces --
_t1.3. Summable Families in Locally Convex Spaces --
_t1.4. Absolutely Summable Families in Locally Convex Spaces --
_t1.5. Totally Summable Families in Locally Convex Spaces --
_t1.6. Finite Dimensional Families in Locally Convex Spaces --
_tChapter 2. Absolutely Summing Mappings --
_t2.1. Absolutely Summing Mappings in Locally Convex Spaces --
_t2.2. Absolutely Summing Mappings in Normed Spaces --
_t2.3. A Characterization of Absolutely Summing Mappings in Normed Spaces --
_t2.4. A Special Absolutely Summing Mappings --
_t2.5. Hilbert-Schmidt Mappings --
_tChapter 3. Nuclear Mappings --
_t3.1. Nuclear Mappings in Normed Spaces --
_t3.2. Quasinuclear Mappings in Normed Spaces --
_t3.3. Products of Quasinuclear and Absolutely Summing Mappings in Normed Spaces --
_t3.4. The Theorem of Dvoretzky and Rogers --
_tChapter 4. Nuclear Locally Convex Spaces --
_t4.1. Definition of Nuclear Locally Convex Spaces --
_t4.2. Summable Families in Nuclear Locally Convex Spaces --
_t4.3. The Topological Dual of Nuclear Locally Convex Spaces --
_t4.4. Properties of Nuclear Locally Convex Spaces --
_tChapter 5. Permanence Properties of Nuclearity --
_t5.1. Subspaces and Quotient Spaces --
_t5.2. Topological Products and Sums --
_t5.3. Complete Hulls --
_t5.4. Locally Convex Tensor Products --
_t5.5. Spaces of Continuous Linear Mappings --
_tChapter 6. Examples of Nuclear Locally Convex Spaces --
_t6.1. Sequence Spaces --
_t6.2. Spaces of Infinitely Differentiable Functions --
_t6.3. Spaces of Harmonic Functions --
_t6.4. Spaces of Analytic Functions --
_tChapter 7. Locally Convex Tensor Products --
_tIntroduction --
_t7.1. Definition of Locally Convex Tensor Products --
_t7.2. Special Locally Convex Tensor Products --
_t7.3. A Characterization of Nuclear Locally Convex Spaces --
_t7.4. The Kernel Theorem --
_t7.5. The Complete π-Tensor Product of Normed Spaces --
_tChapter 8. Operators of Type l1 and s --
_t8.1. The Approximation Numbers of Continuous Linear Mappings in Normed Spaces --
_t8.2. Mappings of Type P --
_t8.3. The Approximation Numbers of Compact Mappings in Hilbert Spaces --
_t8.4. Nuclear and Absolutely Summing Mappings --
_t8.5. Mappings of Type s --
_t8.6. A Characterization of Nuclear Locally Convex Spaces --
_tChapter 9. Diametral and Approximative Dimension --
_t9.1. The Diameter of Bounded Subsets in Normed Spaces --
_t9.2. The Diametral Dimension of Locally Convex Spaces --
_t9.3. The Diametral Dimension of Power Series Spaces --
_t9.4. The Diametral Dimension of Nuclear Locally Convex Spaces --
_t9.5. A Characterization of Dual Nuclear Locally Convex Spaces --
_t9.6. The £-Entropy of Bounded Subsets in Normed Spaces --
_t9.7. The Approximative Dimension of Locally Convex Spaces --
_t9.8. The Approximative Dimension of Nuclear Locally Convex Spaces --
_tChapter 10. Nuclear Locally Convex Spaces with Basis --
_tIntroduction --
_t10.1. Locally Convex Spaces with Basis --
_t10.2. Representation of Nuclear Locally Convex Spaces with Basis --
_t10.3- Bases in Special Nuclear Localty Convex Spaces --
_tChapter 11. Universal Nuclear Locally Convex Spaces --
_t11.1. Imbedding in the Product Space (ξ)1 --
_t11.2. Embedding in the Product Space (ξ)1 --
_tBibliography --
_tIndex --
_tTable of Symbols
506 0 _arestricted access
_uhttp://purl.org/coar/access_right/c_16ec
_fonline access with authorization
_2star
530 _aIssued also in print.
538 _aMode of access: Internet via World Wide Web.
546 _aIn English.
588 0 _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 01. Dez 2022)
650 7 _aMATHEMATICS / Functional Analysis.
_2bisacsh
850 _aIT-RoAPU
856 4 0 _uhttps://doi.org/10.1515/9783112564103
856 4 0 _uhttps://www.degruyter.com/isbn/9783112564103
856 4 2 _3Cover
_uhttps://www.degruyter.com/document/cover/isbn/9783112564103/original
942 _cEB
999 _c276212
_d276212