| 000 | 05872nam a22013335i 4500 | ||
|---|---|---|---|
| 001 | 295882 | ||
| 003 | IT-RoAPU | ||
| 005 | 20230501182029.0 | ||
| 006 | m|||||o||d|||||||| | ||
| 007 | cr || |||||||| | ||
| 008 | 230127t20152016nju fo d z eng d | ||
| 020 |
_a9780691167510 _qprint |
||
| 020 |
_a9781400874002 _qPDF |
||
| 024 | 7 |
_a10.1515/9781400874002 _2doi |
|
| 035 | _a(DE-B1597)9781400874002 | ||
| 035 | _a(DE-B1597)460046 | ||
| 035 | _a(OCoLC)984662405 | ||
| 040 |
_aDE-B1597 _beng _cDE-B1597 _erda |
||
| 050 | 4 | _aQA8.4 | |
| 072 | 7 |
_aSCI075000 _2bisacsh |
|
| 082 | 0 | 4 |
_a510.1 _223 |
| 084 | _aonline - DeGruyter | ||
| 100 | 1 |
_aFerreirós, José _eautore |
|
| 245 | 1 | 0 |
_aMathematical Knowledge and the Interplay of Practices / _cJosé Ferreirós. |
| 250 | _aPilot project. eBook available to selected US libraries only | ||
| 264 | 1 |
_aPrinceton, NJ : _bPrinceton University Press, _c[2015] |
|
| 264 | 4 | _c©2016 | |
| 300 |
_a1 online resource (360 p.) : _b6 line illus. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | 0 |
_tFrontmatter -- _tContents -- _tList of Illustrations -- _tForeword -- _t1. On Knowledge and Practices -- _t2. The Web of Practices -- _t3. Agents and Frameworks -- _t5. Ancient Greek Mathematics -- _t6. Advanced Math -- _t7. Arithmetic Certainty -- _t8. Mathematics Developed -- _t9. Objectivity in Mathematical Knowledge -- _t10. The Problem of Conceptual Understanding -- _tReferences -- _tIndex |
| 506 | 0 |
_arestricted access _uhttp://purl.org/coar/access_right/c_16ec _fonline access with authorization _2star |
|
| 520 | _aThis book presents a new approach to the epistemology of mathematics by viewing mathematics as a human activity whose knowledge is intimately linked with practice. Charting an exciting new direction in the philosophy of mathematics, José Ferreirós uses the crucial idea of a continuum to provide an account of the development of mathematical knowledge that reflects the actual experience of doing math and makes sense of the perceived objectivity of mathematical results.Describing a historically oriented, agent-based philosophy of mathematics, Ferreirós shows how the mathematical tradition evolved from Euclidean geometry to the real numbers and set-theoretic structures. He argues for the need to take into account a whole web of mathematical and other practices that are learned and linked by agents, and whose interplay acts as a constraint. Ferreirós demonstrates how advanced mathematics, far from being a priori, is based on hypotheses, in contrast to elementary math, which has strong cognitive and practical roots and therefore enjoys certainty.Offering a wealth of philosophical and historical insights, Mathematical Knowledge and the Interplay of Practices challenges us to rethink some of our most basic assumptions about mathematics, its objectivity, and its relationship to culture and science. | ||
| 538 | _aMode of access: Internet via World Wide Web. | ||
| 546 | _aIn English. | ||
| 588 | 0 | _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 27. Jan 2023) | |
| 650 | 0 | _aKnowledge, Theory of. | |
| 650 | 0 |
_aMathematics _xPhilosophy. |
|
| 650 | 7 |
_aSCIENCE / Philosophy & Social Aspects. _2bisacsh |
|
| 653 | _aAxiom of Choice. | ||
| 653 | _aAxiom of Completeness. | ||
| 653 | _aContinuum Hypothesis. | ||
| 653 | _aElements. | ||
| 653 | _aEuclidean geometry. | ||
| 653 | _aFrameworkЁgent couples. | ||
| 653 | _aGeorg Cantor. | ||
| 653 | _aGreek geometry. | ||
| 653 | _aJ. H. Lambert. | ||
| 653 | _aKenneth Manders. | ||
| 653 | _aPeano Arithmetic. | ||
| 653 | _aPhilip S. Kitcher. | ||
| 653 | _aRiemann Hypothesis. | ||
| 653 | _aSir Isaac Newton. | ||
| 653 | _aZermeloІraenkel axiom system. | ||
| 653 | _aadvanced mathematics. | ||
| 653 | _aagents. | ||
| 653 | _aarbitrary infinity. | ||
| 653 | _aarbitrary set. | ||
| 653 | _aarithmetical knowledge. | ||
| 653 | _aaxioms. | ||
| 653 | _abasic arithmetic. | ||
| 653 | _acertainty. | ||
| 653 | _aclassical arithmetic. | ||
| 653 | _acognition. | ||
| 653 | _acomplementarity. | ||
| 653 | _acomplex numbers. | ||
| 653 | _aconceptual understanding. | ||
| 653 | _acontinuum. | ||
| 653 | _acounting numbers. | ||
| 653 | _acounting practice. | ||
| 653 | _aculture. | ||
| 653 | _adiagrammatic constructions. | ||
| 653 | _adiagrams. | ||
| 653 | _aelementary mathematics. | ||
| 653 | _aexemplars. | ||
| 653 | _aframeworks. | ||
| 653 | _ageometrical proof. | ||
| 653 | _ahistorians. | ||
| 653 | _ahypotheses. | ||
| 653 | _aintuitionistic arithmetic. | ||
| 653 | _alogic. | ||
| 653 | _amathematical activity. | ||
| 653 | _amathematical knowledge. | ||
| 653 | _amathematical objects. | ||
| 653 | _amathematical practice. | ||
| 653 | _amathematics. | ||
| 653 | _ameasuring practices. | ||
| 653 | _ametamathematics. | ||
| 653 | _amethodological platonism. | ||
| 653 | _anatural numbers. | ||
| 653 | _anumber theory. | ||
| 653 | _aobjectivity. | ||
| 653 | _aordinal numbers. | ||
| 653 | _aphilosophers. | ||
| 653 | _apostulational mathematics. | ||
| 653 | _apractice. | ||
| 653 | _apurely arithmetical proof. | ||
| 653 | _areal numbers. | ||
| 653 | _ascientific practice. | ||
| 653 | _asemantic entities. | ||
| 653 | _aset theory. | ||
| 653 | _asets. | ||
| 653 | _asimple infinity. | ||
| 653 | _asymbols. | ||
| 653 | _asystematic links. | ||
| 653 | _atechnical practice. | ||
| 850 | _aIT-RoAPU | ||
| 856 | 4 | 0 | _uhttps://doi.org/10.1515/9781400874002?locatt=mode:legacy |
| 856 | 4 | 0 | _uhttps://www.degruyter.com/isbn/9781400874002 |
| 856 | 4 | 2 |
_3Cover _uhttps://www.degruyter.com/document/cover/isbn/9781400874002/original |
| 942 | _cEB | ||
| 999 |
_c295882 _d295882 |
||