000 05872nam a22013335i 4500
001 295882
003 IT-RoAPU
005 20230501182029.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 230127t20152016nju fo d z eng d
020 _a9780691167510
_qprint
020 _a9781400874002
_qPDF
024 7 _a10.1515/9781400874002
_2doi
035 _a(DE-B1597)9781400874002
035 _a(DE-B1597)460046
035 _a(OCoLC)984662405
040 _aDE-B1597
_beng
_cDE-B1597
_erda
050 4 _aQA8.4
072 7 _aSCI075000
_2bisacsh
082 0 4 _a510.1
_223
084 _aonline - DeGruyter
100 1 _aFerreirós, José
_eautore
245 1 0 _aMathematical Knowledge and the Interplay of Practices /
_cJosé Ferreirós.
250 _aPilot project. eBook available to selected US libraries only
264 1 _aPrinceton, NJ :
_bPrinceton University Press,
_c[2015]
264 4 _c©2016
300 _a1 online resource (360 p.) :
_b6 line illus.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 0 _tFrontmatter --
_tContents --
_tList of Illustrations --
_tForeword --
_t1. On Knowledge and Practices --
_t2. The Web of Practices --
_t3. Agents and Frameworks --
_t5. Ancient Greek Mathematics --
_t6. Advanced Math --
_t7. Arithmetic Certainty --
_t8. Mathematics Developed --
_t9. Objectivity in Mathematical Knowledge --
_t10. The Problem of Conceptual Understanding --
_tReferences --
_tIndex
506 0 _arestricted access
_uhttp://purl.org/coar/access_right/c_16ec
_fonline access with authorization
_2star
520 _aThis book presents a new approach to the epistemology of mathematics by viewing mathematics as a human activity whose knowledge is intimately linked with practice. Charting an exciting new direction in the philosophy of mathematics, José Ferreirós uses the crucial idea of a continuum to provide an account of the development of mathematical knowledge that reflects the actual experience of doing math and makes sense of the perceived objectivity of mathematical results.Describing a historically oriented, agent-based philosophy of mathematics, Ferreirós shows how the mathematical tradition evolved from Euclidean geometry to the real numbers and set-theoretic structures. He argues for the need to take into account a whole web of mathematical and other practices that are learned and linked by agents, and whose interplay acts as a constraint. Ferreirós demonstrates how advanced mathematics, far from being a priori, is based on hypotheses, in contrast to elementary math, which has strong cognitive and practical roots and therefore enjoys certainty.Offering a wealth of philosophical and historical insights, Mathematical Knowledge and the Interplay of Practices challenges us to rethink some of our most basic assumptions about mathematics, its objectivity, and its relationship to culture and science.
538 _aMode of access: Internet via World Wide Web.
546 _aIn English.
588 0 _aDescription based on online resource; title from PDF title page (publisher's Web site, viewed 27. Jan 2023)
650 0 _aKnowledge, Theory of.
650 0 _aMathematics
_xPhilosophy.
650 7 _aSCIENCE / Philosophy & Social Aspects.
_2bisacsh
653 _aAxiom of Choice.
653 _aAxiom of Completeness.
653 _aContinuum Hypothesis.
653 _aElements.
653 _aEuclidean geometry.
653 _aFrameworkЁgent couples.
653 _aGeorg Cantor.
653 _aGreek geometry.
653 _aJ. H. Lambert.
653 _aKenneth Manders.
653 _aPeano Arithmetic.
653 _aPhilip S. Kitcher.
653 _aRiemann Hypothesis.
653 _aSir Isaac Newton.
653 _aZermeloІraenkel axiom system.
653 _aadvanced mathematics.
653 _aagents.
653 _aarbitrary infinity.
653 _aarbitrary set.
653 _aarithmetical knowledge.
653 _aaxioms.
653 _abasic arithmetic.
653 _acertainty.
653 _aclassical arithmetic.
653 _acognition.
653 _acomplementarity.
653 _acomplex numbers.
653 _aconceptual understanding.
653 _acontinuum.
653 _acounting numbers.
653 _acounting practice.
653 _aculture.
653 _adiagrammatic constructions.
653 _adiagrams.
653 _aelementary mathematics.
653 _aexemplars.
653 _aframeworks.
653 _ageometrical proof.
653 _ahistorians.
653 _ahypotheses.
653 _aintuitionistic arithmetic.
653 _alogic.
653 _amathematical activity.
653 _amathematical knowledge.
653 _amathematical objects.
653 _amathematical practice.
653 _amathematics.
653 _ameasuring practices.
653 _ametamathematics.
653 _amethodological platonism.
653 _anatural numbers.
653 _anumber theory.
653 _aobjectivity.
653 _aordinal numbers.
653 _aphilosophers.
653 _apostulational mathematics.
653 _apractice.
653 _apurely arithmetical proof.
653 _areal numbers.
653 _ascientific practice.
653 _asemantic entities.
653 _aset theory.
653 _asets.
653 _asimple infinity.
653 _asymbols.
653 _asystematic links.
653 _atechnical practice.
850 _aIT-RoAPU
856 4 0 _uhttps://doi.org/10.1515/9781400874002?locatt=mode:legacy
856 4 0 _uhttps://www.degruyter.com/isbn/9781400874002
856 4 2 _3Cover
_uhttps://www.degruyter.com/document/cover/isbn/9781400874002/original
942 _cEB
999 _c295882
_d295882